Outlier identification rules for generalized linear models

نویسنده

  • Sonja Kuhnt
چکیده

Observations which seem to deviate strongly from the main part of the data may occur in every statistical analysis. These observations, usually labelled as outliers, may cause completely misleading results when using standard methods and may also contain information about special events or dependencies. Therefore it is of interest to identify them. We discuss outliers in situations where a generalized linear model is assumed as null-model for the regular data and introduce rules for their identi cation. For the special cases of a loglinear Poisson model and a logistic regression model some one-step identi ers based on robust and non-robust estimators are proposed and compared.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A statistical test for outlier identification in data envelopment analysis

In the use of peer group data to assess individual, typical or best practice performance, the effective detection of outliers is critical for achieving useful results. In these ‘‘deterministic’’ frontier models, statistical theory is now mostly available. This paper deals with the statistical pared sample method and its capability of detecting outliers in data envelopment analysis. In the prese...

متن کامل

On Robust Estimation of High Dimensional Generalized Linear Models

We study robust high-dimensional estimation of generalized linear models (GLMs); where a small number k of the n observations can be arbitrarily corrupted, and where the true parameter is high dimensional in the “p n” regime, but only has a small number s of non-zero entries. There has been some recent work connecting robustness and sparsity, in the context of linear regression with corrupted o...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Application of Recursive Least Squares to Efficient Blunder Detection in Linear Models

In many geodetic applications a large number of observations are being measured to estimate the unknown parameters. The unbiasedness property of the estimated parameters is only ensured if there is no bias (e.g. systematic effect) or falsifying observations, which are also known as outliers. One of the most important steps towards obtaining a coherent analysis for the parameter estimation is th...

متن کامل

Projection Estimators for Generalized Linear Models

We introduce a new class of robust estimators for generalized linear models which is an extension of the class of projection estimators for linear regression. These projection estimators are defined using an initial robust estimator for a generalized linear model with only one unknown parameter. We found a bound for the maximum asymptotic bias of the projection estimator caused by a fraction ε ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012